1,496 research outputs found

    Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations

    Get PDF
    In this paper we describe a novel framework for the discovery of the topical content of a data corpus, and the tracking of its complex structural changes across the temporal dimension. In contrast to previous work our model does not impose a prior on the rate at which documents are added to the corpus nor does it adopt the Markovian assumption which overly restricts the type of changes that the model can capture. Our key technical contribution is a framework based on (i) discretization of time into epochs, (ii) epoch-wise topic discovery using a hierarchical Dirichlet process-based model, and (iii) a temporal similarity graph which allows for the modelling of complex topic changes: emergence and disappearance, evolution, and splitting and merging. The power of the proposed framework is demonstrated on the medical literature corpus concerned with the autism spectrum disorder (ASD) - an increasingly important research subject of significant social and healthcare importance. In addition to the collected ASD literature corpus which we will make freely available, our contributions also include two free online tools we built as aids to ASD researchers. These can be used for semantically meaningful navigation and searching, as well as knowledge discovery from this large and rapidly growing corpus of literature.Comment: In Proc. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 201

    MKEM: a Multi-level Knowledge Emergence Model for mining undiscovered public knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since Swanson proposed the Undiscovered Public Knowledge (UPK) model, there have been many approaches to uncover UPK by mining the biomedical literature. These earlier works, however, required substantial manual intervention to reduce the number of possible connections and are mainly applied to disease-effect relation. With the advancement in biomedical science, it has become imperative to extract and combine information from multiple disjoint researches, studies and articles to infer new hypotheses and expand knowledge.</p> <p>Methods</p> <p>We propose MKEM, a Multi-level Knowledge Emergence Model, to discover implicit relationships using Natural Language Processing techniques such as Link Grammar and Ontologies such as Unified Medical Language System (UMLS) MetaMap. The contribution of MKEM is as follows: First, we propose a flexible knowledge emergence model to extract implicit relationships across different levels such as molecular level for gene and protein and Phenomic level for disease and treatment. Second, we employ MetaMap for tagging biological concepts. Third, we provide an empirical and systematic approach to discover novel relationships.</p> <p>Results</p> <p>We applied our system on 5000 abstracts downloaded from PubMed database. We performed the performance evaluation as a gold standard is not yet available. Our system performed with a good precision and recall and we generated 24 hypotheses.</p> <p>Conclusions</p> <p>Our experiments show that MKEM is a powerful tool to discover hidden relationships residing in extracted entities that were represented by our Substance-Effect-Process-Disease-Body Part (SEPDB) model. </p
    corecore